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Abstract. Results of Monte Carlo and molecular-dynamics simulations of Lennard-Jones 
systems are presented in order to comparevarious methodsofcomputinginterfacialproper- 
tiesof liquid-vapour systems. For the computation of the surface tension y a new method is 
developed, which makes use of the Bennett procedure for calculating free-energy differ- 
ences. The method is compared with the conventional route to the surface tension via the 
virial expression. For the temperature derivative of the surface tension, dy/dT, both a 
fluctuation equation and the Gibbs adsorption equation are employed. It is found that 
dy/dT is determined considerably more accurately by the adsorption equation (through 
the surface entropy). Results of simulations of binary Lennard-Jones mixtures are also 
presented. For the argon-krypton system, valuesof the adsorption of argon at the interface 
are determined from density profiles, and are compared with values predicted by the 
adsorption equation. Positive adsorption of argon manilcsts itself in krypton-rich mixtures 
as a significant 'bump' in the argon density profile near the interface. 

1. Introduction 

The microscopic understanding of liquid-vapour systems has increased greatly by the 
use of computer simulation methods for the computation of thermodynamic interfacial 
quantities [I]. From simulations of systems with 102-10' atoms it has been found that 
the interface has a thickness of typically 2-3 atomic diameters (at temperatures well 
below the critical temperature). Such microscopic information is not provided by the 
thermodynamic theory of macroscopic, two-phase systems. Thermodynamics merely 
provides relations between ensemble averages, which are computed in simulations. In 
this paper we investigate whether these relations are obeyed by the small liquid-vapour 
systems used in simulations. Attempts in this direction have already been reported by 
other authors [Z, 31. However, the present study is more systematic and complete. The 
systems often consist of a thin liquid film in equilibrium with its vapour, so that finite- 
size effects are expected to be of particular importance. Further, we investigate whether 
these relations can be used to compute thermodynamic quantities by alternative, more 
efficient methods than the methods commonly used. 

t Also: Universite Libre de Bruxelles, Belgium. 
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The first relation we consider is in fact the definition of the surface tension y of a 
liquid-vapour system with a planar interface of area A :  

Y = ( a F / a A ) ~ . v . r  (1.1) 

where Fis  the free energy of the system. For a system consisting of atoms interacting 
through a painvise additive interatomic potential p(r), one can derive from equation 
(1.1) (see section 2) 

wherer, is the distance between atomsiandj, p'(ri,) is thederivativeofthepair potential, 
and angular brackets denote an ensemble average. This expression also follows from 
the definition of the surface tension as the tangential pressure deficit at the interface, by 
using the vinal theorem for the components of the pressure tensor. Equation (1.2) will 
be referred to as the virial expression of the surface tension. In most simulation studies 
the surface tension has been determined by using the virial expression [l]. In section 3 
it is demonstrated that the surface tension can also be determined directly from the 
definition ( l , l) ,  by computing the change in free energy corresponding to a small 
isothermal, volume-conserving deformation of the system that enhances the area of the 
interface. This shows that the values of y obtained from simulations through the vuial 
expression are consistent with the thermodynamic definition (1 .l), and furthermore 
provides analternative method todetermine the surface tensionfromsimulations, which 
is, in principle. applicable also to geometries other than the flat interface. 

In section 4 we consider the temperature derivative of the surface tension, dy/dT 
(or better ( a ~ / a T ) ~ , ~ , ~ ) .  The temperature derivative of a thermodynamic quantity a, 
which is the canonical average of amicroscopicobservable & (independent of the kinetic 
energy of the system), is given by the fluctuation equation 141 

da/dT= ( l / k S P ) ( ( O -  U)&) (1.3) 

where Uis the potential energy of the system, which fluctuatesaroundan average value 
U. This equation, which follows directly from the statistical-mechanical definition of 
phase-space probability density, is commonly used for the computation of specific heats 
or magnetic susceptibilities from computer simulations. For the surface tension it turns 
out that equation (1.3) yields dy/dTwith rather large statistical uncertainty, primarily 
due to large fluctuations in the microscopicohservable 9. 

Section 5 deals with the Gihbs adsorption equation [l] 

Here 11% is the surface entropy density, and ri and p, are the adsorption and chemical 
potential, respectively, of component i in the system. Previous attempts [2, 31 to verify 
the adsorption equation by simulation suffered from large error bars. Here we consider 
first a single-component system, for which the choice of the equimolar dividing surface 
[l] yields a vanishing second term Tdp. Values of qs are compared with values of 
dy/dT, and good agreement is obtained. Next, binary mixtures are considered, with 
interaction parameters appropriate to the argon-krypton system. Choosing the dividing 
surface so that rkwmn = 0, we compare values of Firgo" with values of dy/dpargon (at 
constant temperature). Reasonable agreement is obtained. 
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In the simulations discussed in this paper, the Lennard-Jones interatomic potential 
has been used: 

- ( ~ / r ) ~ ]  i f r i R ,  

i f r > R ,  (1.5) 

where Reisthecut-off radius. Both theMonte Carlomethod andthemolecular-dynamics 
method have been used. In Monte Carlo simulations the truncated, discontinuous 
potential (1.5) is used. In molecular-dynamics simulations non-singular forces are used 
(i.e. the delta function at r = R, is ignored), corresponding to a shifted, continuous 
potential. Hence, in molecular-dynamics simulations a different interatomic potential 
is used than in Monte Carlo simulations, and molecular-dynamics results cannot be 
compared with Monte Carlo results. In same cases (section 3) a long-range correction 
to the surface tension is applied, to a m u n t  for the neglected tail of the Lennard-Jones 
potential. In these cases values of the surface tension are representative of a system with 
the full interatomic potential. In the other cases (sections 4 and 5) this long-range 
correction is not applied, so there the results are representative of either a system with 
atruncatedpotential (in thecaseofMonte Carlosimulations) orasystemwithatruncated 
and shifted (continuous) potential (in the case of molecular-dynamics simulations). 

Dimensionless reduced quantities are used in this paper, and defined as follows 
(reduced quantities are indicated with an asterisk): 

length L* = Lfu 
energy E* = E / .  
entropy S* = S/kB 

temperature T T* = kBT/E 

surface tension y* = YU2fE  

adsorption r* = ruZ. 
density p* = No3/V 

The asterisk will be omitted for simplicity. 

2. Virial expression of the surface tension 

In this section the virial expression of the surface tension [l, 5,6] is derived by evaluating 
the change in free energy due to an isothermal, volume-conserving deformatios of the 
system shown in figure 1. Further, we discuss the typical accuracy one obtains in using 
this expression in computer simulations. 

2.1, Derivation of the virial expression 

We consider a liquid-vapour system consisting of N atoms of mass m,  enclosed in a 
volume V = L,L,L, with periodic boundary conditions in the x ,  y and z directions (see 
figure 1). The derivation given here is restricted to systems with planar liquid-vapour 



3648 E Salomom and M Mareschai 

_ _  
t 
N 
1 

.', - 
a 
r . - -  - -  

interfaces (as shown in figure 1) and painvise additive interatomic potentials p(r). In 
the absence of an external field, the potential energy of the system reads 

WrN)  = C q ( r Y ) .  (2 .1 )  
icj 

The free energy of the system, F ( N ,  V,  T ,  A ) ,  is given by 
A 3N 

exp[-PF(N, V ,  T , A ) ] =  ,/ d p  exp[-PWN)I (2.2) 
V 

where A = ( 2 ~ m k , T / h ~ ) ~ D  and P = (kBT)-I. We consider the following coordinate 
transformation r+ r': 

x' = x(1 + E )  y' = y( l  + E )  2' = r(l  + &)-z (2.3) 
which keeps the volume V constant and enhances the interface area A = 2L,L, by an 
amount 

AA, = A ( ~ E  + E ~ ) .  (2.4) 

From the definition (1.1) of the surface tension y, it follows that 

Here F(N, V, T, A + AA,) is the free energy of the system after the transformation, 
which is determined by applying transformation (2.3) to equation (2.2) and expanding 
in powers of E :  

exp[-P'N, V ,  T,  A + AA,)] = 
A3N ~ I P  exp[-j~(r")] 

v 

1 =-/vdpexp[-PU(p)] AaN (1 -P&'(ri,) (r; - r i )  + o((ri - r$)  (2.6) 
N !  i<j 

r; = rii[l - ~ ( 1  - 3r~/$)  + O(E?)] 

where 

(2.7) 
in which the terms O((r6 - r r ) z )  and O($) contain second- and higher-order terms, 
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and it has been used that the Jacobian of transformation (2.3) is equal to unity. One 
obtains from equations (2.2), (2.5), (2.6) and (2.7) the vinal expression of the surface 
tension: 

where angular brackets denote an ensemble average. 

2.2. Statistical uncertainty 

Identifying an ensemble average rvwith the time average (&)obtained from a simulation 
run with a length of T time steps, one can estimate the statistical uncertainty in rv by the 
following expression for the standard deviations: 

s2 = ((@) - .Z)/(T/tc) (2.9) 

in which t ,  is the correlation time. The numerator in this expression is obtained directly 
from the simulation, and the correlation time can be determined as follows [4]. The run 
of T time steps is divided into nb consecutive blocks of length tb (so that nbtb = 0, and 
values of L? in each block are used to compute block averages ah. One defines the 
correlation time by 

with 

1 "b 
S Z ( t h )  = - ( r v b  - ay. 

nb b = l  

(2.10) 

(2.11) 

In practice, one determines t, as the asymptotic value of a plot of tbs2(th)/s2(tb = 1) 
against tip". 

Wenowconsider thestatisticaluncertaintyin thesurfacetensionofthesystemshown 
in figure 1, as determined by molecular dynamics (MD) using the vinal expression (2.8). 
For a system of 256 or 500 atoms, at temperature 5 = 0.9, a correlation time of 
tc= 30msteps( l  MDStep = 10-'4s)isfound,and((PZ) - yZ) = 1.2,sothatthestandard 
deviationiss = 5.7/T'/z,ors = 0.02forarunofT= lo5 MDStepS.Thisesthateappears 
to be slightly too low to account for the spread in values of ywe obtained from different 
simulations (by a factor of 2 at most; see e.g. tables 2 and 3 in section 4). The estimate 
of the correlation time, 6c 30 MD steps, is confirmed by a plot of the time correlation 
function of the surface tension, (yoyt), shown in figure 2. One sees that (you,) decays in 
a time of approximately 30 MD steps. 

The above discrepancy (a factor of 2) might originate from the correlation between 
p and Oimplied by equation (1.3). The correlation time for the potential energy Uis an 
order of magnitude larger than for the surface tension y. This might result in a small but 
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Figure 2. Time correlation function (yay,) as a 
function of time 1. for a system of 500 atoms at 

0 loo  ‘ O 0  temperature I = 0.9, obtained from a molecular- 
dynamicsrunof 2.5 x 105msteps,  
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persistent effect on 9, which is not taken into account in the estimate given by equation 
(2.9). 

3. New method to determine the surface tension 

In most simulation studies of the liquid-vapour interface the surface tension y was 
determined using thc vinal expression (2.8). In this section it will be shown that y can 
also be determined directly using the definition 

This direct approach is in the spirit of the method devised by Miyazaki et ai [7], which 
makes use of the relation [l] 

where Fs  is the surface free energy of a liquid-vapour interface with area A. The latter 
method employs a rather complicated scheme to create a free surface in a bulk liquid. 
The method proposed here is relatively simple. 

3.1. Description of the method 

For the simulations either the Monte Carlo or the molecular-dynamics technique can be 
used. The system, shown in figure 1, consists of a liquid film in equilibrium with its 
vapour, contained in a rectangular box with sides of length L,, Ly and L,. The total 
interface area is equal to A = 2L,L,. Periodic boundary conditions are used in the x ,  y 
andz directions. 

Inorder to compute the surface tension from equation (3.1), we consider again the 
following isothermal, volume-conserving coordinate transformation: 

x ’ = x ( l + e )  y ’  = y( l  + E) 2’ = 2(1+ e )+  (3.3) 
where e is a parameter ( c  4 1). This transformation enhances the interface area by an 
amount AA = A(2e + e2). We willdetermine the free-energy change AFcorresponding 
to the transformation. Thisis not straightforward, as the freeenergycannot beexpressed 
as astatistical ensemble average of a microscopic quantity. Bennett [SI hasdeveloped a 
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general method to determine free-energy differences from simulations. Bennett's 
method makes use of the energy difference 

(3.4) 
where 0, and O0 are the potential energies of two systems that have the same con- 
figurational phase space but different Hamiltonians. The method also works for two 
systems that are related by a geometrical transformation: transformation (3.3) in the 
present case. Two histograms of the quantity A 0  are recorded in simulations of the 
system: one using the original box and one using the transformed box. The free-energy 
difference AFis determined afterwards by solving numerically the implicit equation 

( f ( -BAO + PA.F))i = ( f ( B A 0  - BAF))o (3.5) 
in whichp = (ks r ) - ' , f (x )  = [l + exp(x)]-'is the Fermi function, andangular brackets 
denote an ensemble average (index 0 refers to the original box, index 1 to the deformed 
box). 

The statistical error in the value of AFinneases with decreasing overlap of the two 
histograms [&I. In the present case the overlap can be 'tuned' by the parameter e: for 
E = 0 the overlap is complete, while for increasing E the overlap decreases. This implies 
that E should not be chosen too large. On the other hand, the absolute value of A F  
decreases with decreasing E (AF = 0 for E = 0), so that the relative error in AF is ex- 
pected to increase for E decreasing to zero. Hence there is an optimum value for E. By 
performing simulations using different values of e the optimum value was found to 
be in the range E = 0.0054.01 (at least for the system considered in the next section). 

3.2. Application of the method 

We have applied the method described in the previous section to the Lennard-Jones 
system. Simulations were performed by the Monte Carlo method. A simulation box 
with sides of length L, = 10.8, Ly = 10.8 and t, = 21.6 was used, with 1000 atoms. The 
liquid film had a thickness of about Ar = 10. For the potential a cut-off radius of R, = 5 
was employed. 

The system was allowed to reach equilibrium by performing 0.5 X lo4 Monte Carlo 
steps per atom. The actual simulations bad a length of 2 X lo4 Monte Carlo steps per 
atom. The surface tension was determined afterwards by the method described in the 
previous section. We also determined density profiles p(r) .  Values of the bulk liquid 
density p"q were found to be close to values of pkq obtained from simulations of homo- 
geneous systems. (This point is discussed by Rowlinson and Widom [l]; for smaller 
values of the cut-off radius than the value R, = 5 used here, one finds that p'q is smaller 
than pkq: see also section5.1). 

In table 1 the obtained values of the surface tension y are presellted. Values of the 
long-range correction term ymm, which represents the contribution of the potential for 
distances larger than the cut-off radius R,, are also given in table 1. This term was 
calculated by the expression [9] 

ycom = ~ W P ' ' ~ / R J ~  (3.6) 
which is based on the approximation that the pair distribution function g(r )  = 1 for 
r 1 R,. The sum y + y", which represents the surface tension for the full Lennard- 
Jones potential, is plotted in  figure 3 as a function of temperature. For comparison, two 
results that were determined by the vinal expression (2.8) are included in figure 3: one 
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Table 1. Surface tension y of the Lennard-Jones system at different temperatures, obtained 
from Monte Carlo simulations using equation (3.1). The long-range correction knn ymm is 
also indicated. 

z Y Y m  

0.6867 1.081 0.136 
0.7 0.982 0.136 
0.75 1.011 0.130 
0.8 0.821 0.124 
0.85 0.746 0.116 
0.9 0.611 0.109 
0.95 0.454 0.102 
1.0 0.450 0.095 
1.05 0.330 0.087 
1.1 0.237 0.080 

i , ri._,..." , , 
~ ~ 

0.6 0.8 1 1.2 

temperature T 

Figure 3. Surface tension y (including the long- 
range correction) as a function of temperature I 
for the Lennard-Jonessystem: (0) obtained from 
Monte Carlo simulations using equation (3.1); 
(m) obtained from molecular-dynamio simu- 
lations using the virial expression (2.8). 

obtained from a molecular-dynamics simulation described in section 5.1 (using a system 
with 864 atoms, a temperature of T = 1.0 and a cut-off radius of R, = S), and one 
reported in the molecular-dynamics study of Nijmeijer ef nl [lo] (using T = 0.92 and 
R, = 7.33; a long-range correction term of yeon = 0.05 has been taken into account). 
Strictly speaking, molecular-dynamics values cannot be compared with Monte Carlo 
values, since molecular-dynamics values represent a system with a shifted interatomic 
potential (see section 1). Nevertheless, the agreement in figure 3 implies that for a cut- 
off radius of R, = 5 the surface tension is not significantly affected by shifting the 
potential. 

The points in figure 3 shows a statistical scatter of about A y  = +0.05. This means 
that the statistical accuracy of the surface tension determined by the method proposed 
here is comparable to the accuracy obtained by using the virial expression. It should be 
noted that, although application of the method is simple compared with application of 
the method of Miyazaki el al [7], it is still more complicated than using the virial 
expression. 

4. Temperature derivative of the surface tension 

As mentioned in section 1, the temperature derivative of the surface tension is given by 
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Table 2. Total averages and subaverages for a Lennard-Jones system (R. = 3) of 256 atoms 
at temperature r = 0.9, obtained from a molecular-dynamics run of 2.5 x IO1 MD steps. No 
long-range correction has been included in the values. 

Interval 
(IO' MD steps) Y dddr  

0-250 0.398 -2.4 2 0.5 

0-62.5 0.395 -2.7 
62.5-125 0.419 -3.1 
125-187.5 0.362 -1.7 
187.5-250 0.415 -1.8 

Table 3. Total averages and subaverages for a Lennard-Jones system (R, = 3) of 500 atoms 
attemperaturer = 0.8,obtainedfromamolecular-dynamicstunof 1.0 x 105msteos.  No 
long-range correction has been included in the values. 

Interval 
(IO' MD steps) Y 

0.100 0.585 -2.2 5 1.0 

0-25 0.542 -1.2 
25-50 0.532 -4.3 
50.75 0.661 -4.0 
75-100 0.604 -0.3 

the fluctuation equation 

dy/dT= (l/kBT2)((O- U)?) (4.1) 
where pis the microscopic observable defined by the virial expression (2.8) of the surface 
tension. This equation follows directly by differentiating the virial expression with 
respect to the temperature. An altemative approach [ll] is to make use of the general 
relation 

c') = (Pexp[-(P' - p)@dexp[-(B' - P ) r S ) T  (4.2) 

which allows the surface tension at temperature T' to be determined from a simulation 
at temperature T (here p = (kBq- ' ) .  One recovers equation (4.1) by using relation 
(4.2) in the definition 

dy/dT= T+T {[Y(U - y(T)l/(T - W. (4.3) 

In the following we will compare values of dy/dr (z is the reduced temperature) 
computed with the fluctuation equation (4.1) with the value of dy/dr obtained from 
values of y at different temperatures. Molecular-dynamics simulations were performed 
on the system shown in figure 1, using a shifted Lennard-Jones potential with cut-off 
radius R, = 3, and an integration time step of lo-" s. Either the N o d  algorithm [12] or 
the momentum-scaling algorithm [13] was used to fix the temperature. Values of y and 
dy/dt for a system of 256 atoms at temperature I = 0.9 are represented in table 2 and 
for a system of 500 atoms at temperature t = 0.8 in table 3. The values of dy/dt are in 
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0 100 200 300 400 5 0 0  

time (MU steps) 
Yiiute4.Time correlation function ((dy/dr),(dy/ 
dr),) as a function of time I (normalized to the 
value at f = 0). for a system of 500 atoms at tem. 
perature r = 0.9, obtained &om a molecular- 
dynamics run of 10‘ MD steps. 

0 2 s  S O  1 5  100 
frequency 

Figure 5. Power spectrum of the microscopic 
observable 0 correspondingtody/dr, foraaystem 
of 500 atoms at temperature r = 0.9, obtained 
from a molecular-dynamics run of IO5 MD steps. 
The dimensionless frequency i s  scaled so that 
a value of 100 corresponds to a time interval of 
2 MD steps. 

agreement with the value obtained from valuesof yat different temperatures: dy/dz = 
-1.9 * 0.1 (see section 5.2). However, the statistical error in the value of dy/dz 
computed from equation (4.1) is quite large, as demonstrated by the subaverages in 
tables 2 and 3. In other words. dy/dr is determined more accurately from values of y at 
two or three different temperatures than from equation (4.1). 

If one assumes that 8 = 6&/a2, the microscopic observable corresponding to dy/ 
da (see equation (4. I)), obeys Gaussiansta tistiw, then one can use the statistical analysis 
of section 2.2 to determine the standard deviation in dy/dz. One obtains typically 
((8’) - 6*)’~’ = 75, while the correlation timeisabout r, = 50 MD steps, asdemonstrated 
by the time correlation plot in figure 4. These values yield a standard deviation of s = 
500/T‘/’ (see equation (2.9)), or s = 2 for a time interval of 5 x 1 0 4 ~ ~  steps. This 
estimate is in fair agreement with the variation in the subaverages in tables 2 and 3. 

To get a better understanding of the fluctuations in dy/dz we have determined the 
power spectrum of 6, wnicb is shown in figure 5 (the power is defined as the squared 
modulus of the Fourier transform with respect to time). Clearly most of the power is 
concentrated in the low-frequency region, and is negligible above a frequency that 
corresponds to a time interval of about 10MD steps. Possibly fluctuations of hydro- 
dynamic origin (due to capillary waves) plar a role here. Another approach we followed 
was to replace the instantaneous values of 6 in equation (4.1) by subaverages over time 
intervals of 10,50 or 100 MD steps. This reduces considerably the amplitude of short- 
time fluctuations in the accumulated average of the observable 6 (defined as (l/r) 
ZI= 6,). However, it does not affect long-time oscillations in the accumulated average. 
Consequently, the use of subaverages does not lead to a significant suppression of the 
large statistical fluctuation in the final average of 6. 
5. Gibbs adsorption equation 
In a liquid-vapour system with M components, changes in the surface tension y are 
related to changes in the temperature T and the chemical potentials p, (i = 1, . . ., M )  
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by the Gibbs adsorption equation [l] 
M 

d y =  - q  'dz - Ti dpi 
i = l  

(5.1) 

in which qs is the surface entropy density and ri is the adsorption of component i. In 
deriving this equation one divides the system into three parts: a bulk Liquid part, a bulk 
vapour part andasurface layer. The smallsystems used incomputer simulationscontain 
a relatively very thick surface layer, in particular at high temperature (the thickness of 
the surface layer diverges as the temperature approaches the critical temperature). 
Further, if the system shown in figure 1 is used, one has a liquid film with a thickness of 
typically only 10 atomic diameters. In such a small system significant deviations from 
macroscopic equations such as equation (5.1) might occur. This point is investigated in 
this section. It should be emphasized that we do not investigate finite-size effects on the 
values of thermodynamic quantities (which are probably not negligible for the small 
systems considered here). 

Previously Chapela et ul [2] and Lee er a1 [3] have attempted to compare results 
of simulations with predictions of the Gibbs adsorption equation. Large error bars 
prevented these attempts from being very accurate. The error bars originate pre- 
dominantly from statistical uncertainties in the bulk liquid and vapour densities, owing 
to the fact that density profiles obtained from simulations show considerable spatial 
fluctuations. 

In section 5.1 some general points conceming density profiles are discussed. In 
sections 5.2 and 5.3 results of simulations are presented for pure Lennard-Jones systems 
and Lennard-Jones mixtures, which are discussed in the light of the Gibbs adsorption 
equation. 

5. I .  Densiry profiles 
We consider again a Liquid film in equilibrium with its vapour, contained in a rectangular 
box with periodic boundary conditions in the x ,  y and z directions (see figure 1). The 
density profile p ( z )  is determined in a sitnulatior. Sy .'iividi!ig the system into a number 
of slabs (e.g. 100) perpendicular to the z axis, and recording a histogram of the number 
of particles n(z)  in each slab. By averaging over a simulation length of typically lo5 
moves per particle (either using the Monte Carlo or the molecular-dynamics method), 
one obtains a density profile with relatively small spatial fluctuations. The fluctuations 
in the instantaneous profile are much larger, owing to the small number of particles used 
insimdations(N = lo2-lo4). Foramixture,thepartialdensitypro&Iespi(z)(i = 1,. . . , 
M) are determined in the same way. 

It is important that the centre of mass is kept fixed in the simulation. If this is not 
done spurious effects occur: the surface layer is thickened, the bulk liquid density is 
lowered and the bulk vapour density is enhanced (This is readily understood from the 
fact that a uniform density profile would be obtained from a long simulation run if the 
centre of mass were to move freely throughout the system.) 

At first sight, the centre of mass is automatically fixed in a molecular-dynamics 
simulation by initially setting the total momentumof the systemequal tozero. However, 
this is not true, asa consequenceofthe periodic boundary conditions: boundary crossings 
are not exactly balanced. Therefore the centre of mass should be shifted back to its 
original position after each, say, 10 moves per particle (this amounts to performing the 
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Figure 6. Effect of the cut-off radius R, on the 
density profile of the Lennard-Jones system at 
temperature r = 1.0, using 864 atoms and a 
simulation box with L, = 10.1, L y =  10.1 and 
L, = u).2.Theprofilesweredetermined bymoie- 
cular-dynamics runs of 2.5 x lo' integration 
steps. 

simulation in the centre-of-mass frame). The same should be done in a Monte Carlo 
simulation, to eliminate random movements of the centre of mass. 

In simulations of mixtures a more serious problem occurs: owing to slow inter- 
diffusion of different components, long runs are required to obtain reproducible, well- 
averaged partial density profiles. For example, a molecular-dynamics run of 10' inte- 
gration steps is not long enough for the argon-krypton system with 256 atoms at tem- 
perature z = 0.9 (this system is considered in section 5.3), and yields asymmetric partial 
density profiles. To enhance the interdiffusion we used the following variant of the 
Monte Carlo method: in addition to conventional displacements of atoms we allow also 
pairs of dissimilar atoms to exchange positions. Both displacements and exchanges are 
accepted or rejected according to a transition probability satisfying detailed balance. 
We found that this method givesamore efficient determinationofpartialdensityprofiles. 
as a consequence of a better sampling of configurational phase space. 

Finally it is demonstrated how density profiles are affected by the value of the 
cut-off radius R, of the potential. For the Lennard-Jones system values ranging from 
R, = 2.5 to R, = 7.33 have been used by different authors. The density profiles repre- 
sented in Bgure 6, for R, = 3 and R, = 5, show that with decreasing R, the liquid density 
decreases and the vapour density increases. This effect originates from the fact the: a 
smaller cut-off radius corrzsponds to neglecting a larger part of the attractive tail of the 
Lennard-Jones potential, thereby reducing the critical temperature and the region of 
coexistence in the temperature-density phase diagram. This implies that long-range 
correction terms for thermodynamic quantities, such as expression (3.6) for the surface 
tension. account only partially for the effect of the cut-off radius on these quantities. 
The fact that the density profile is affected by the cut-off radius is not accounted for by 
these terms. 

5.2. Suface entropy 

For a pure system the adsorption equation (5.1) reads 

d y =  -7 'dz - r d y .  (5.2) 
The surface entropy density y5 and the adsorption r depend on the choice of the dividing 
surface separating the liquid from the vapour [l] (see figure 1). We choose the dividing 
surface so that the adsorption vanishes: r = 0. Then it follows from equation (5.2) that 

vs  = -(dy/dz). (5.3) 



Atomisric simulation of liquid-uapour systems 3657 

Table 4. Surface tension y and surface entropy density q' of the (truncated and shifted) 
Lennard-Jones system at different temperatures r ,  obtained from molecular-dynamics simu- 
lations 

T Y rl' 

0.687 0.736 1.984 
0.75 0.668 1.843 
0.8 0.559 1.878 
0.85 0.490 1.672 
0.9 0.365 1.642 

For this choice of the dividing surface one also has the relation [I] y = Y', where Ys is 
the surface free-energy density. Hence the surface entropy density can be determined 
from the relation 

in which 
17. = (YS - Y ) / Z  (5.4) 

,p (U - uiisvb - UvaPVw)/A (5.5) 
is the surface potential energy density. Here U is the potential energy of the liquid- 
vapour system, and U"+' are the bulk liquid and vapour potential energy densities 
(i.e. U = SU/SV)  and V"q and V"P are the liquid and vapour volumes (these volumes 
depend on the choice of the dividing surface). We will compare values of qswith values 
of (dy/dr) for a Lennard-Jones system with 256 atoms, in order to see if equation (5.3) 
is obeyed. 

Molecular-dynamics simulations of a liquid-vapour Lennard-Jones system with 256 
atoms were performed at different temperatures. A simulation box with sides of length 
L, = 6.7, L, = 6.7 and L, = 13.4 was used, containing a liquid film with a thickness of 
about Az = 6.7. A shifted potential with a cut-off radius of R, = 3 was employed. First 
the system was equilibrated by performing 5 x lo' integration time steps (of lO-''s); 
next, lo5 integration steps were performed for the determination of the potentialenergy 
U, the surface tension y (using the vinal expression (2.8)) and the density profile p ( z ) .  
Each simulation was supplemented by a bulk liquid simulation and a bulk vapour 
simulation (at the same densities as in the liquid-vapour system) for the determination 
of the energy densitiesu"4 and uyaP. Valuesof u"q were in agreement with valuesreported 
by McDonald and Singer [14] (after correction for the difference in cut-off radius and 
the shift of the potential). 

In table 4, results for the surface tension y (no longrrange correction term is included 
in these values) and the surface entropy density qs are presented. In  figure 7, y and q s  
are plotted as a function of temperature. The two curves in this figure are fits that are 
related to each other by the relation 17' = -(dy/ds) (i.e. equation (5.3)). The slight 
curvature in the fit of y ( r )  corresponds to a slight decrease with temperature of 7'. This 
demonstrates that the adsorption equation in the form (5.3) is well obeyed by the small 
simulation system considered here. It furtherdemonstrates that equation (5.3) provides 
an accurate method to determine the temperature derivative (dy/dr). 

5.3. Binary mixtures 

In this section binary mixtures are considered, with n, atoms of type 'a' and nb atoms of 
type 'b'. We choose the dividing surface so that the adsorption of component b vanishes: 
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. . .  

Flguw 7. Surface tension y and surface entropy 
density q'ofthe (truncatedandshifted) Lennard- 

two fits are related by equation (5.3). 
0.6 0.1 0.8 O,? ' Jones system as a function of temperature E. The 
0 

temperature 1 

rb = 0. Then the adsorption equation (5.1) reads 

dy = -r. dpa (5.6) 
at constant temperature. The composition of the bulk liquid is represented by the 
fractional concentrations x, and xbr with x, + xb = 1. For a system with varying com- 
position equation (5.6) can be written as 

ra = -(dY/dxb)/(dPddXb). (5.7) 
We will compare values of r. with values of the right-hand side of equation (5.7). The 
adsorption r. is determined from partial density profiles. Some algebra leads to the 
following expression (see iigurc ij: 

in which ppp and pYP are the bulk vapour densities, and p:'q andplq are the bulk liquid 
densities. The differential of the chemical potential in equation (5.7) is determined from 
the vapour density p:"P through the ideal-gas expression 

dps = T d(ln p;*P). (5.9) 
In equilibrium the chemical potential in the liquid is equal to the chemical potential in 
the vapour. 

Simulations were performed on binary systems with 256 atoms, using Lennard-Jones 
parameters appropriate to the argon-krypton system (a = argon, b = krypton): 
&/ebb = 0.763 (this ratio was also used by Chapela era/ [ Z ] ) .  For the a-b interaction the 
Berthelot rule cab = ( E ~ E ~ ~ ) ' ~  was employed. For simplicity, equal atomic sizes were 
used: U,, = ubb = uab. Five different mixtures were studied: n, = 0,64,128,192 and 256 
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I a I 256 argon 

64 argon + 192 krypton I 

256 krypton 

V 
0.5 kryplon 

argon 

'0 25 5 0  75  100 25  5 0  7 5  100 
height z (90) hclght z (%) 

Figure S. Partial density profiles obtained from Monte Carlo simulations of the argon- 
krypton system at five different compositions. 

Table S. Surface tension y and adsorption ra of the argon-krypton system at different 
compositions, obtained from Monte Carlo simulations described in section 5.3. No long- 
rangecorrection hasbeen applied. Bulk liquidandvapour partial densitiesarealsoindicated. 

256 0.418 0.725 0 0.021 0 
192 0.552 0.54 0.22 0.012 0.0010 0.353 
128 0.722 0.35 0.44 0.007 0,0022 0.272 
64 0.885 0.16 0.66 0.0032 0.0028 0.184 
0 1.041 0 0.83 0 0.0020 0 

(nb = 256 - na), at temperature T = 0.9 (r = kT/&,,; also the quantities y and pa are 
reduced with respect to E-). To enhance interdiffusion in the mixtures, simulationswere 
performed with the variant of the Monte Carlo method described in section 5.1. After 
each 25 Monte Carlo steps per atom, pairs of dissimilar atoms were considered for an 
exchange of positions. The simulation box described in section 5.2 was used, and a 
potential with a cut-off radius of R,  = 3. First the system was equilibrated by performing 
5 x lo4 Monte Carlo steps per atom; next, 2.5 X lo5 Monte Carlo steps per atom were 
performed for the determination of the surface tension (usingthe virial expression (2.8)) 
and the partial density profiles. 
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adsorption 
equation 
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‘I 0.2 

2 
P ~~E 0 .  0 I 0 0.2 0.4 0.6 0.8 1 
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Figure 9. Surface tension y o f  the argon-krypton 
sptemdescribed in the textasa functionofliquid 
concentration x.. No long-range correction has 
been applied. equation. 

Figure 10. Adsorption r, as a function of liquid 
concentration x.: (0) values determined from 
density profiles; (-) &om the adsorption 

Figure 8 shows the density proNes obtained for the five different mixtures. In the 
mixture with 64 argon atoms a significant ‘bump’ occurs in the argon profile near the 
liquid-vapour interface. This has also been observed in density profiles calculated from 
the mean-field theory by Lee er a1 [3]. The bump is msistent with the positive values of 
the adsorption r., presented in table 5 together with other results obtained from the 
similations. In figure 9, the surface tension isplotted asa functionofliquidconcentration 
~~(nolong-rangecorrectionhasbeenapplied).Thecurveisafit to thesimulationresults. 
Using this fit in equation (5.7), together with a fit to the vapour densities pFP(xb), we 
obtain the curve in figure 10 representing the adsorption r, according to the adsorption 
equation. The dots in this figure represent the values of r, determined directly from the 
density profiles, using equation (5.8). The agreement is good, considering the fact that 
there is a substantial statistical uncertainty (which is difficult to quantify) both in the 
direct value of r, and in the value given by the adsorption equation. 

6. Cnnrl!!sijnn! 

It has been shown that atomistic simulations yield values of interfacial properties of 
small, phase-segregated systems that are consistent with various thermodynamic 
relations, within the limits of statistical accuracy. 

A new method has been developed for the computation of the liquid-vapour surface 
tension, which makes useofthe Bennett procedure to determine free-energydifferences. 
The method gives a statistical accuracy comparable to the accuracy obtained with the 
vinal expression of the surface tension. 

It hasbeenshown that the temperaturederivativeofthesurface tensionisdetermined 
considerably more accurately by the surface entropy than by the fluctuation equation. 
Values of the temperature derivative for a system of 256 atoms were found to be in 
agreement with values predicted by the Gibbs adsorption equation. This agreement is 
remarkable, considering the small size of the systemused to model an inhomogeneous 
fluid (as mentioned before, consistency with the adsorption equation does not rule out 
finite-size effects on thermodynamic quantities). 
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Simulation results for the argon-krypton liquid-vapour system have beenpresented, 
which are again consistent with the Gibbs adsorption equation. Partial density profiles 
for this system were determined by a variant of the Monte Carlo method, in which 
both displacements and exchanges of atoms are allowed. Positive adsorption of argon 
manifests itself in krypton-rich mixtures as a significant 'bump' in the density profile 
near the interface. 

We are presently applying the techniques described in this paper to mixtures that do 
not obey the Berthelot rule and mixtures with differently sized atoms: for these mixtures, 
excess quantities are expected to be large. 
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